Theorem all201 | index | src |

theorem all201 (R: set) (l: nat): $ 0, l e. all2 R <-> l = 0 $;
StepHypRefExpression
1 leneq0
len l = 0 <-> l = 0
2 len0
len 0 = 0
3 all2len
0, l e. all2 R -> len 0 = len l
4 3 eqcomd
0, l e. all2 R -> len l = len 0
5 2, 4 syl6eq
0, l e. all2 R -> len l = 0
6 1, 5 sylib
0, l e. all2 R -> l = 0
7 all20
0, 0 e. all2 R
8 preq2
l = 0 -> 0, l = 0, 0
9 8 eleq1d
l = 0 -> (0, l e. all2 R <-> 0, 0 e. all2 R)
10 7, 9 mpbiri
l = 0 -> 0, l e. all2 R
11 6, 10 ibii
0, l e. all2 R <-> l = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)