Theorem all202 | index | src |

theorem all202 (R: set) (l: nat): $ l, 0 e. all2 R <-> l = 0 $;
StepHypRefExpression
1 bitr3
(0, l e. all2 (cnv R) <-> l, 0 e. all2 R) -> (0, l e. all2 (cnv R) <-> l = 0) -> (l, 0 e. all2 R <-> l = 0)
2 all2com
0, l e. all2 (cnv R) <-> l, 0 e. all2 R
3 1, 2 ax_mp
(0, l e. all2 (cnv R) <-> l = 0) -> (l, 0 e. all2 R <-> l = 0)
4 all201
0, l e. all2 (cnv R) <-> l = 0
5 3, 4 ax_mp
l, 0 e. all2 R <-> l = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)