theorem zmodeqmod (a b n: nat):
$ n != 0 -> (a %Z n = b %Z n <-> modZ(n): a = b) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
eqzeqm |
b0 (a %Z n) = b0 (b %Z n) -> modZ(n): b0 (a %Z n) = b0 (b %Z n) |
| 2 |
|
b0eq |
a %Z n = b %Z n -> b0 (a %Z n) = b0 (b %Z n) |
| 3 |
1, 2 |
syl |
a %Z n = b %Z n -> modZ(n): b0 (a %Z n) = b0 (b %Z n) |
| 4 |
|
zmodmodid |
a %Z n % n = a %Z n |
| 5 |
|
zmodmodid |
b %Z n % n = b %Z n |
| 6 |
|
zeqmeqm |
modZ(n): b0 (a %Z n) = b0 (b %Z n) <-> mod(n): a %Z n = b %Z n |
| 7 |
6 |
conv eqm |
modZ(n): b0 (a %Z n) = b0 (b %Z n) <-> a %Z n % n = b %Z n % n |
| 8 |
7 |
bi1i |
modZ(n): b0 (a %Z n) = b0 (b %Z n) -> a %Z n % n = b %Z n % n |
| 9 |
4, 5, 8 |
eqtr3g |
modZ(n): b0 (a %Z n) = b0 (b %Z n) -> a %Z n = b %Z n |
| 10 |
3, 9 |
ibii |
a %Z n = b %Z n <-> modZ(n): b0 (a %Z n) = b0 (b %Z n) |
| 11 |
|
zeqmmod |
n != 0 -> modZ(n): b0 (a %Z n) = a |
| 12 |
|
zeqmmod |
n != 0 -> modZ(n): b0 (b %Z n) = b |
| 13 |
11, 12 |
zeqmeqm23d |
n != 0 -> (modZ(n): b0 (a %Z n) = b0 (b %Z n) <-> modZ(n): a = b) |
| 14 |
10, 13 |
syl5bb |
n != 0 -> (a %Z n = b %Z n <-> modZ(n): a = b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)