theorem zeqmeqm (a b n: nat): $ modZ(n): b0 a = b0 b <-> mod(n): a = b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(modZ(n): b0 a = b0 b <-> b0 n |Z a -ZN b) -> (mod(n): a = b <-> b0 n |Z a -ZN b) -> (modZ(n): b0 a = b0 b <-> mod(n): a = b) |
2 |
|
zdvdeq2 |
b0 a -Z b0 b = a -ZN b -> (b0 n |Z b0 a -Z b0 b <-> b0 n |Z a -ZN b) |
3 |
2 |
conv zeqm |
b0 a -Z b0 b = a -ZN b -> (modZ(n): b0 a = b0 b <-> b0 n |Z a -ZN b) |
4 |
|
zsubb0 |
b0 a -Z b0 b = a -ZN b |
5 |
3, 4 |
ax_mp |
modZ(n): b0 a = b0 b <-> b0 n |Z a -ZN b |
6 |
1, 5 |
ax_mp |
(mod(n): a = b <-> b0 n |Z a -ZN b) -> (modZ(n): b0 a = b0 b <-> mod(n): a = b) |
7 |
|
bitr |
(mod(n): a = b <-> mod(n): b = a) -> (mod(n): b = a <-> b0 n |Z a -ZN b) -> (mod(n): a = b <-> b0 n |Z a -ZN b) |
8 |
|
eqmcomb |
mod(n): a = b <-> mod(n): b = a |
9 |
7, 8 |
ax_mp |
(mod(n): b = a <-> b0 n |Z a -ZN b) -> (mod(n): a = b <-> b0 n |Z a -ZN b) |
10 |
|
eqmzdvdsub |
mod(n): b = a <-> b0 n |Z a -ZN b |
11 |
9, 10 |
ax_mp |
mod(n): a = b <-> b0 n |Z a -ZN b |
12 |
6, 11 |
ax_mp |
modZ(n): b0 a = b0 b <-> mod(n): a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)