Theorem zmodmodid | index | src |

theorem zmodmodid (a n: nat): $ a %Z n % n = a %Z n $;
StepHypRefExpression
1 modmodid
zabs (zfst a + n -ZN zsnd a % n) % n % n = zabs (zfst a + n -ZN zsnd a % n) % n
2 1 conv zmod
a %Z n % n = a %Z n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)