theorem dvdzeqm (G: wff) (a b m n: nat):
$ G -> m || n $ >
$ G -> modZ(n): a = b $ >
$ G -> modZ(m): a = b $;
Step | Hyp | Ref | Expression |
1 |
|
dvdtr |
zabs (b0 m) || zabs (b0 n) -> zabs (b0 n) || zabs (a -Z b) -> zabs (b0 m) || zabs (a -Z b) |
2 |
1 |
conv zdvd, zeqm |
zabs (b0 m) || zabs (b0 n) -> zabs (b0 n) || zabs (a -Z b) -> modZ(m): a = b |
3 |
|
dvdeq |
zabs (b0 m) = m -> zabs (b0 n) = n -> (zabs (b0 m) || zabs (b0 n) <-> m || n) |
4 |
|
zabsb0 |
zabs (b0 m) = m |
5 |
3, 4 |
ax_mp |
zabs (b0 n) = n -> (zabs (b0 m) || zabs (b0 n) <-> m || n) |
6 |
|
zabsb0 |
zabs (b0 n) = n |
7 |
5, 6 |
ax_mp |
zabs (b0 m) || zabs (b0 n) <-> m || n |
8 |
|
hyp h1 |
G -> m || n |
9 |
7, 8 |
sylibr |
G -> zabs (b0 m) || zabs (b0 n) |
10 |
|
hyp h2 |
G -> modZ(n): a = b |
11 |
10 |
conv zdvd, zeqm |
G -> zabs (b0 n) || zabs (a -Z b) |
12 |
2, 9, 11 |
sylc |
G -> modZ(m): a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)