theorem uncpl2 (A: set): $ A u. Compl A == _V $;
Step | Hyp | Ref | Expression |
1 |
|
bith |
x e. A u. Compl A -> x e. _V -> (x e. A u. Compl A <-> x e. _V) |
2 |
|
elun |
x e. A u. Compl A <-> x e. A \/ x e. Compl A |
3 |
|
elcpl |
x e. Compl A <-> ~x e. A |
4 |
3 |
oreq2i |
x e. A \/ x e. Compl A <-> x e. A \/ ~x e. A |
5 |
|
em |
x e. A \/ ~x e. A |
6 |
4, 5 |
mpbir |
x e. A \/ x e. Compl A |
7 |
2, 6 |
mpbir |
x e. A u. Compl A |
8 |
1, 7 |
ax_mp |
x e. _V -> (x e. A u. Compl A <-> x e. _V) |
9 |
|
elv |
x e. _V |
10 |
8, 9 |
ax_mp |
x e. A u. Compl A <-> x e. _V |
11 |
10 |
eqri |
A u. Compl A == _V |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)