Theorem uncpl2 | index | src |

theorem uncpl2 (A: set): $ A u. Compl A == _V $;
StepHypRefExpression
1 bith
x e. A u. Compl A -> x e. _V -> (x e. A u. Compl A <-> x e. _V)
2 elun
x e. A u. Compl A <-> x e. A \/ x e. Compl A
3 elcpl
x e. Compl A <-> ~x e. A
4 3 oreq2i
x e. A \/ x e. Compl A <-> x e. A \/ ~x e. A
5 em
x e. A \/ ~x e. A
6 4, 5 mpbir
x e. A \/ x e. Compl A
7 2, 6 mpbir
x e. A u. Compl A
8 1, 7 ax_mp
x e. _V -> (x e. A u. Compl A <-> x e. _V)
9 elv
x e. _V
10 8, 9 ax_mp
x e. A u. Compl A <-> x e. _V
11 10 eqri
A u. Compl A == _V

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)