Theorem
em
≪
|
index
|
src
|
≫
theorem em (p: wff): $ p \/ ~p $;
Step
Hyp
Ref
Expression
1
id
~p -> ~p
2
1
conv
or
p \/ ~p
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_mp
)