theorem uncpl1 (A: set): $ Compl A u. A == _V $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqstr | Compl A u. A == A u. Compl A -> A u. Compl A == _V -> Compl A u. A == _V |
|
2 | uncom | Compl A u. A == A u. Compl A |
|
3 | 1, 2 | ax_mp | A u. Compl A == _V -> Compl A u. A == _V |
4 | uncpl2 | A u. Compl A == _V |
|
5 | 3, 4 | ax_mp | Compl A u. A == _V |