Theorem uncpl1 | index | src |

theorem uncpl1 (A: set): $ Compl A u. A == _V $;
StepHypRefExpression
1 eqstr
Compl A u. A == A u. Compl A -> A u. Compl A == _V -> Compl A u. A == _V
2 uncom
Compl A u. A == A u. Compl A
3 1, 2 ax_mp
A u. Compl A == _V -> Compl A u. A == _V
4 uncpl2
A u. Compl A == _V
5 3, 4 ax_mp
Compl A u. A == _V

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)