Theorem elcpl | index | src |

theorem elcpl (A: set) (a: nat): $ a e. Compl A <-> ~a e. A $;
StepHypRefExpression
1 eleq1
x = a -> (x e. A <-> a e. A)
2 1 noteqd
x = a -> (~x e. A <-> ~a e. A)
3 2 elabe
a e. {x | ~x e. A} <-> ~a e. A
4 3 conv Compl
a e. Compl A <-> ~a e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)