theorem sscpl (A B: set): $ B C_ A <-> Compl A C_ Compl B $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(x e. B -> x e. A <-> ~x e. A -> ~x e. B) -> (x e. Compl A -> x e. Compl B <-> ~x e. A -> ~x e. B) -> (x e. B -> x e. A <-> x e. Compl A -> x e. Compl B) |
2 |
|
con3bi |
x e. B -> x e. A <-> ~x e. A -> ~x e. B |
3 |
1, 2 |
ax_mp |
(x e. Compl A -> x e. Compl B <-> ~x e. A -> ~x e. B) -> (x e. B -> x e. A <-> x e. Compl A -> x e. Compl B) |
4 |
|
elcpl |
x e. Compl A <-> ~x e. A |
5 |
|
elcpl |
x e. Compl B <-> ~x e. B |
6 |
4, 5 |
imeqi |
x e. Compl A -> x e. Compl B <-> ~x e. A -> ~x e. B |
7 |
3, 6 |
ax_mp |
x e. B -> x e. A <-> x e. Compl A -> x e. Compl B |
8 |
7 |
aleqi |
A. x (x e. B -> x e. A) <-> A. x (x e. Compl A -> x e. Compl B) |
9 |
8 |
conv subset |
B C_ A <-> Compl A C_ Compl B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)