Theorem cplcpl | index | src |

theorem cplcpl (A: set): $ Compl (Compl A) == A $;
StepHypRefExpression
1 bitr
(x e. Compl (Compl A) <-> ~x e. Compl A) -> (~x e. Compl A <-> x e. A) -> (x e. Compl (Compl A) <-> x e. A)
2 elcpl
x e. Compl (Compl A) <-> ~x e. Compl A
3 1, 2 ax_mp
(~x e. Compl A <-> x e. A) -> (x e. Compl (Compl A) <-> x e. A)
4 bitr4
(~x e. Compl A <-> ~~x e. A) -> (x e. A <-> ~~x e. A) -> (~x e. Compl A <-> x e. A)
5 noteq
(x e. Compl A <-> ~x e. A) -> (~x e. Compl A <-> ~~x e. A)
6 elcpl
x e. Compl A <-> ~x e. A
7 5, 6 ax_mp
~x e. Compl A <-> ~~x e. A
8 4, 7 ax_mp
(x e. A <-> ~~x e. A) -> (~x e. Compl A <-> x e. A)
9 notnot
x e. A <-> ~~x e. A
10 8, 9 ax_mp
~x e. Compl A <-> x e. A
11 3, 10 ax_mp
x e. Compl (Compl A) <-> x e. A
12 11 eqri
Compl (Compl A) == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)