theorem cplcpl (A: set): $ Compl (Compl A) == A $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(x e. Compl (Compl A) <-> ~x e. Compl A) -> (~x e. Compl A <-> x e. A) -> (x e. Compl (Compl A) <-> x e. A) |
2 |
|
elcpl |
x e. Compl (Compl A) <-> ~x e. Compl A |
3 |
1, 2 |
ax_mp |
(~x e. Compl A <-> x e. A) -> (x e. Compl (Compl A) <-> x e. A) |
4 |
|
bitr4 |
(~x e. Compl A <-> ~~x e. A) -> (x e. A <-> ~~x e. A) -> (~x e. Compl A <-> x e. A) |
5 |
|
noteq |
(x e. Compl A <-> ~x e. A) -> (~x e. Compl A <-> ~~x e. A) |
6 |
|
elcpl |
x e. Compl A <-> ~x e. A |
7 |
5, 6 |
ax_mp |
~x e. Compl A <-> ~~x e. A |
8 |
4, 7 |
ax_mp |
(x e. A <-> ~~x e. A) -> (~x e. Compl A <-> x e. A) |
9 |
|
notnot |
x e. A <-> ~~x e. A |
10 |
8, 9 |
ax_mp |
~x e. Compl A <-> x e. A |
11 |
3, 10 |
ax_mp |
x e. Compl (Compl A) <-> x e. A |
12 |
11 |
eqri |
Compl (Compl A) == A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)