theorem cplcpl (A: set): $ Compl (Compl A) == A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (x e. Compl (Compl A) <-> ~x e. Compl A) -> (~x e. Compl A <-> x e. A) -> (x e. Compl (Compl A) <-> x e. A) | 
        
          | 2 |  | elcpl | x e. Compl (Compl A) <-> ~x e. Compl A | 
        
          | 3 | 1, 2 | ax_mp | (~x e. Compl A <-> x e. A) -> (x e. Compl (Compl A) <-> x e. A) | 
        
          | 4 |  | bitr4 | (~x e. Compl A <-> ~~x e. A) -> (x e. A <-> ~~x e. A) -> (~x e. Compl A <-> x e. A) | 
        
          | 5 |  | noteq | (x e. Compl A <-> ~x e. A) -> (~x e. Compl A <-> ~~x e. A) | 
        
          | 6 |  | elcpl | x e. Compl A <-> ~x e. A | 
        
          | 7 | 5, 6 | ax_mp | ~x e. Compl A <-> ~~x e. A | 
        
          | 8 | 4, 7 | ax_mp | (x e. A <-> ~~x e. A) -> (~x e. Compl A <-> x e. A) | 
        
          | 9 |  | notnot | x e. A <-> ~~x e. A | 
        
          | 10 | 8, 9 | ax_mp | ~x e. Compl A <-> x e. A | 
        
          | 11 | 3, 10 | ax_mp | x e. Compl (Compl A) <-> x e. A | 
        
          | 12 | 11 | eqri | Compl (Compl A) == A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)