Theorem cplinj | index | src |

theorem cplinj (A B: set): $ A == B <-> Compl A == Compl B $;
StepHypRefExpression
1 cpleq
A == B -> Compl A == Compl B
2 eqseq
Compl (Compl A) == A -> Compl (Compl B) == B -> (Compl (Compl A) == Compl (Compl B) <-> A == B)
3 cplcpl
Compl (Compl A) == A
4 2, 3 ax_mp
Compl (Compl B) == B -> (Compl (Compl A) == Compl (Compl B) <-> A == B)
5 cplcpl
Compl (Compl B) == B
6 4, 5 ax_mp
Compl (Compl A) == Compl (Compl B) <-> A == B
7 cpleq
Compl A == Compl B -> Compl (Compl A) == Compl (Compl B)
8 6, 7 sylib
Compl A == Compl B -> A == B
9 1, 8 ibii
A == B <-> Compl A == Compl B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)