theorem cplin (A B: set): $ Compl (A i^i B) == Compl A u. Compl B $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
(x e. Compl (A i^i B) <-> ~x e. A i^i B) -> (~x e. A i^i B <-> x e. Compl A u. Compl B) -> (x e. Compl (A i^i B) <-> x e. Compl A u. Compl B) |
| 2 |
|
elcpl |
x e. Compl (A i^i B) <-> ~x e. A i^i B |
| 3 |
1, 2 |
ax_mp |
(~x e. A i^i B <-> x e. Compl A u. Compl B) -> (x e. Compl (A i^i B) <-> x e. Compl A u. Compl B) |
| 4 |
|
bitr4 |
(~x e. A i^i B <-> ~(x e. A /\ x e. B)) -> (x e. Compl A u. Compl B <-> ~(x e. A /\ x e. B)) -> (~x e. A i^i B <-> x e. Compl A u. Compl B) |
| 5 |
|
noteq |
(x e. A i^i B <-> x e. A /\ x e. B) -> (~x e. A i^i B <-> ~(x e. A /\ x e. B)) |
| 6 |
|
elin |
x e. A i^i B <-> x e. A /\ x e. B |
| 7 |
5, 6 |
ax_mp |
~x e. A i^i B <-> ~(x e. A /\ x e. B) |
| 8 |
4, 7 |
ax_mp |
(x e. Compl A u. Compl B <-> ~(x e. A /\ x e. B)) -> (~x e. A i^i B <-> x e. Compl A u. Compl B) |
| 9 |
|
bitr |
(x e. Compl A u. Compl B <-> x e. Compl A \/ x e. Compl B) ->
(x e. Compl A \/ x e. Compl B <-> ~(x e. A /\ x e. B)) ->
(x e. Compl A u. Compl B <-> ~(x e. A /\ x e. B)) |
| 10 |
|
elun |
x e. Compl A u. Compl B <-> x e. Compl A \/ x e. Compl B |
| 11 |
9, 10 |
ax_mp |
(x e. Compl A \/ x e. Compl B <-> ~(x e. A /\ x e. B)) -> (x e. Compl A u. Compl B <-> ~(x e. A /\ x e. B)) |
| 12 |
|
bitr4 |
(x e. Compl A \/ x e. Compl B <-> ~x e. A \/ ~x e. B) -> (~(x e. A /\ x e. B) <-> ~x e. A \/ ~x e. B) -> (x e. Compl A \/ x e. Compl B <-> ~(x e. A /\ x e. B)) |
| 13 |
|
oreq |
(x e. Compl A <-> ~x e. A) -> (x e. Compl B <-> ~x e. B) -> (x e. Compl A \/ x e. Compl B <-> ~x e. A \/ ~x e. B) |
| 14 |
|
elcpl |
x e. Compl A <-> ~x e. A |
| 15 |
13, 14 |
ax_mp |
(x e. Compl B <-> ~x e. B) -> (x e. Compl A \/ x e. Compl B <-> ~x e. A \/ ~x e. B) |
| 16 |
|
elcpl |
x e. Compl B <-> ~x e. B |
| 17 |
15, 16 |
ax_mp |
x e. Compl A \/ x e. Compl B <-> ~x e. A \/ ~x e. B |
| 18 |
12, 17 |
ax_mp |
(~(x e. A /\ x e. B) <-> ~x e. A \/ ~x e. B) -> (x e. Compl A \/ x e. Compl B <-> ~(x e. A /\ x e. B)) |
| 19 |
|
notan |
~(x e. A /\ x e. B) <-> ~x e. A \/ ~x e. B |
| 20 |
18, 19 |
ax_mp |
x e. Compl A \/ x e. Compl B <-> ~(x e. A /\ x e. B) |
| 21 |
11, 20 |
ax_mp |
x e. Compl A u. Compl B <-> ~(x e. A /\ x e. B) |
| 22 |
8, 21 |
ax_mp |
~x e. A i^i B <-> x e. Compl A u. Compl B |
| 23 |
3, 22 |
ax_mp |
x e. Compl (A i^i B) <-> x e. Compl A u. Compl B |
| 24 |
23 |
eqri |
Compl (A i^i B) == Compl A u. Compl B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)