Theorem notan | index | src |

theorem notan (a b: wff): $ ~(a /\ b) <-> ~a \/ ~b $;
StepHypRefExpression
1 bitr
(~(a /\ b) <-> a -> ~b) -> (a -> ~b <-> ~a \/ ~b) -> (~(a /\ b) <-> ~a \/ ~b)
2 notan2
~(a /\ b) <-> a -> ~b
3 1, 2 ax_mp
(a -> ~b <-> ~a \/ ~b) -> (~(a /\ b) <-> ~a \/ ~b)
4 notnot
a <-> ~~a
5 4 imeq1i
a -> ~b <-> ~~a -> ~b
6 5 conv or
a -> ~b <-> ~a \/ ~b
7 3, 6 ax_mp
~(a /\ b) <-> ~a \/ ~b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)