theorem rlameq2b (a: nat) {x: nat} (v w: nat x):
$ \. x e. a, v = \. x e. a, w <-> A. x (x e. a -> v = w) $;
Step | Hyp | Ref | Expression |
1 |
|
nfnv |
FN/ x a |
2 |
1 |
nfrlam1 |
FN/ x \. x e. a, v |
3 |
1 |
nfrlam1 |
FN/ x \. x e. a, w |
4 |
2, 3 |
nf_eq |
F/ x \. x e. a, v = \. x e. a, w |
5 |
|
appneq1 |
\. x e. a, v = \. x e. a, w -> (\. x e. a, v) @ x = (\. x e. a, w) @ x |
6 |
|
apprlam |
x e. a -> (\. x e. a, v) @ x = v |
7 |
|
apprlam |
x e. a -> (\. x e. a, w) @ x = w |
8 |
6, 7 |
eqeqd |
x e. a -> ((\. x e. a, v) @ x = (\. x e. a, w) @ x <-> v = w) |
9 |
8 |
bi1d |
x e. a -> (\. x e. a, v) @ x = (\. x e. a, w) @ x -> v = w |
10 |
9 |
com12 |
(\. x e. a, v) @ x = (\. x e. a, w) @ x -> x e. a -> v = w |
11 |
5, 10 |
rsyl |
\. x e. a, v = \. x e. a, w -> x e. a -> v = w |
12 |
4, 11 |
ialdh |
\. x e. a, v = \. x e. a, w -> A. x (x e. a -> v = w) |
13 |
|
rlameq2a |
A. x (x e. a -> v = w) -> \. x e. a, v = \. x e. a, w |
14 |
12, 13 |
ibii |
\. x e. a, v = \. x e. a, w <-> A. x (x e. a -> v = w) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)