theorem apprlam (a: nat) {x: nat} (b: nat x):
$ x e. a -> (\. x e. a, b) @ x = b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbnid | N[x / x] b = b |
|
| 2 | apprlams | x e. a -> (\. x e. a, b) @ x = N[x / x] b |
|
| 3 | 1, 2 | syl6eq | x e. a -> (\. x e. a, b) @ x = b |