theorem apprlam (a: nat) {x: nat} (b: nat x): $ x e. a -> (\. x e. a, b) @ x = b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbnid | N[x / x] b = b |
|
2 | apprlams | x e. a -> (\. x e. a, b) @ x = N[x / x] b |
|
3 | 1, 2 | syl6eq | x e. a -> (\. x e. a, b) @ x = b |