Theorem apprlam | index | src |

theorem apprlam (a: nat) {x: nat} (b: nat x):
  $ x e. a -> (\. x e. a, b) @ x = b $;
StepHypRefExpression
1 sbnid
N[x / x] b = b
2 apprlams
x e. a -> (\. x e. a, b) @ x = N[x / x] b
3 1, 2 syl6eq
x e. a -> (\. x e. a, b) @ x = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)