Theorem apprlams | index | src |

theorem apprlams (a: nat) {x: nat} (b c: nat x):
  $ c e. a -> (\. x e. a, b) @ c = N[c / x] b $;
StepHypRefExpression
1 appeq1
\. x e. a, b == (\ x, b) |` a -> (\. x e. a, b) @ c = ((\ x, b) |` a) @ c
2 rlameqs
\. x e. a, b == (\ x, b) |` a
3 1, 2 ax_mp
(\. x e. a, b) @ c = ((\ x, b) |` a) @ c
4 applams
(\ x, b) @ c = N[c / x] b
5 resapp
c e. a -> ((\ x, b) |` a) @ c = (\ x, b) @ c
6 4, 5 syl6eq
c e. a -> ((\ x, b) |` a) @ c = N[c / x] b
7 3, 6 syl5eq
c e. a -> (\. x e. a, b) @ c = N[c / x] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)