Theorem apprlamed2 | index | src |

theorem apprlamed2 (G: wff) (a c d: nat) {x: nat} (f b: nat x):
  $ G -> c e. a $ >
  $ G /\ x = c -> b = d $ >
  $ G -> f = \. x e. a, b -> f @ c = d $;
StepHypRefExpression
1 appneq1
f = \. x e. a, b -> f @ c = (\. x e. a, b) @ c
2 1 eqeq1d
f = \. x e. a, b -> (f @ c = d <-> (\. x e. a, b) @ c = d)
3 hyp e
G /\ x = c -> b = d
4 hyp h
G -> c e. a
5 3, 4 apprlamed
G -> (\. x e. a, b) @ c = d
6 2, 5 syl5ibrcom
G -> f = \. x e. a, b -> f @ c = d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)