theorem apprlamed1 (G P: wff) (a c f: nat) {x: nat} (b: nat x):
$ G -> c e. a $ >
$ G /\ x = c -> f @ c = b -> P $ >
$ G -> f = \. x e. a, b -> P $;
Step | Hyp | Ref | Expression |
1 |
|
ax_6 |
E. x x = c |
2 |
|
nfv |
F/ x G |
3 |
|
nfnv |
FN/ x a |
4 |
3 |
nfrlam1 |
FN/ x \. x e. a, b |
5 |
4 |
nfeq2 |
F/ x f = \. x e. a, b |
6 |
|
nfv |
F/ x P |
7 |
5, 6 |
nfim |
F/ x f = \. x e. a, b -> P |
8 |
|
appneq1 |
f = \. x e. a, b -> f @ c = (\. x e. a, b) @ c |
9 |
8 |
eqeq1d |
f = \. x e. a, b -> (f @ c = b <-> (\. x e. a, b) @ c = b) |
10 |
|
anr |
G /\ x = c -> x = c |
11 |
10 |
appeq2d |
G /\ x = c -> (\. x e. a, b) @ x = (\. x e. a, b) @ c |
12 |
|
apprlam |
x e. a -> (\. x e. a, b) @ x = b |
13 |
10 |
eleq1d |
G /\ x = c -> (x e. a <-> c e. a) |
14 |
|
hyp h |
G -> c e. a |
15 |
14 |
anwl |
G /\ x = c -> c e. a |
16 |
13, 15 |
mpbird |
G /\ x = c -> x e. a |
17 |
12, 16 |
syl |
G /\ x = c -> (\. x e. a, b) @ x = b |
18 |
11, 17 |
eqtr3d |
G /\ x = c -> (\. x e. a, b) @ c = b |
19 |
9, 18 |
syl5ibrcom |
G /\ x = c -> f = \. x e. a, b -> f @ c = b |
20 |
|
hyp e |
G /\ x = c -> f @ c = b -> P |
21 |
19, 20 |
syld |
G /\ x = c -> f = \. x e. a, b -> P |
22 |
21 |
exp |
G -> x = c -> f = \. x e. a, b -> P |
23 |
2, 7, 22 |
eexdh |
G -> E. x x = c -> f = \. x e. a, b -> P |
24 |
1, 23 |
mpi |
G -> f = \. x e. a, b -> P |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)