theorem apprlamed (G: wff) (a c d: nat) {x: nat} (b: nat x):
$ G /\ x = c -> b = d $ >
$ G -> c e. a $ >
$ G -> (\. x e. a, b) @ c = d $;
Step | Hyp | Ref | Expression |
1 |
|
apprlams |
c e. a -> (\. x e. a, b) @ c = N[c / x] b |
2 |
|
hyp h |
G -> c e. a |
3 |
1, 2 |
syl |
G -> (\. x e. a, b) @ c = N[c / x] b |
4 |
|
hyp e |
G /\ x = c -> b = d |
5 |
4 |
sbned |
G -> N[c / x] b = d |
6 |
3, 5 |
eqtrd |
G -> (\. x e. a, b) @ c = d |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)