theorem apprlam0 (a: nat) {x: nat} (b c: nat x):
$ ~c e. a -> (\. x e. a, b) @ c = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
noteq |
(c e. Dom (\. x e. a, b) <-> c e. a) -> (~c e. Dom (\. x e. a, b) <-> ~c e. a) |
2 |
|
eleq2 |
Dom (\. x e. a, b) == a -> (c e. Dom (\. x e. a, b) <-> c e. a) |
3 |
|
dmrlam |
Dom (\. x e. a, b) == a |
4 |
2, 3 |
ax_mp |
c e. Dom (\. x e. a, b) <-> c e. a |
5 |
1, 4 |
ax_mp |
~c e. Dom (\. x e. a, b) <-> ~c e. a |
6 |
|
ndmapp |
~c e. Dom (\. x e. a, b) -> (\. x e. a, b) @ c = 0 |
7 |
5, 6 |
sylbir |
~c e. a -> (\. x e. a, b) @ c = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)