Theorem rlamrcl | index | src |

theorem rlamrcl (a d: nat) {x: nat} (b c: nat x):
  $ d e. (\. x e. a, b) @ c -> c e. a $;
StepHypRefExpression
1 ax_3
(~c e. a -> ~d e. (\. x e. a, b) @ c) -> d e. (\. x e. a, b) @ c -> c e. a
2 nel0
~d e. 0
3 apprlam0
~c e. a -> (\. x e. a, b) @ c = 0
4 3 elneq2d
~c e. a -> (d e. (\. x e. a, b) @ c <-> d e. 0)
5 4 noteqd
~c e. a -> (~d e. (\. x e. a, b) @ c <-> ~d e. 0)
6 2, 5 mpbiri
~c e. a -> ~d e. (\. x e. a, b) @ c
7 1, 6 ax_mp
d e. (\. x e. a, b) @ c -> c e. a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)