theorem rlamapp (F: set) (a: nat) {x: nat}:
$ \. x e. a, F @ x == F <-> isfun F /\ Dom F == a $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(\. x e. a, F @ x == F <-> (\ x, F @ x) |` a == F) -> ((\ x, F @ x) |` a == F <-> isfun F /\ Dom F == a) -> (\. x e. a, F @ x == F <-> isfun F /\ Dom F == a) |
2 |
|
eqseq1 |
\. x e. a, F @ x == (\ x, F @ x) |` a -> (\. x e. a, F @ x == F <-> (\ x, F @ x) |` a == F) |
3 |
|
rlameqs |
\. x e. a, F @ x == (\ x, F @ x) |` a |
4 |
2, 3 |
ax_mp |
\. x e. a, F @ x == F <-> (\ x, F @ x) |` a == F |
5 |
1, 4 |
ax_mp |
((\ x, F @ x) |` a == F <-> isfun F /\ Dom F == a) -> (\. x e. a, F @ x == F <-> isfun F /\ Dom F == a) |
6 |
|
lamapp2 |
(\ x, F @ x) |` a == F <-> isfun F /\ Dom F == a |
7 |
5, 6 |
ax_mp |
\. x e. a, F @ x == F <-> isfun F /\ Dom F == a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)