theorem rappsabed1 (F: set) (G P: wff) (a: nat) {x: nat} (A: set x): $ G /\ x = a -> F @' a == A -> P $ > $ G -> F == S\ x, A -> P $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax_6 | E. x x = a |
|
2 | nfv | F/ x G |
|
3 | nfsv | FS/ x F |
|
4 | nfsab1 | FS/ x S\ x, A |
|
5 | 3, 4 | nfeqs | F/ x F == S\ x, A |
6 | nfv | F/ x P |
|
7 | 5, 6 | nfim | F/ x F == S\ x, A -> P |
8 | rappeq1 | F == S\ x, A -> F @' a == (S\ x, A) @' a |
|
9 | 8 | eqseq1d | F == S\ x, A -> (F @' a == A <-> (S\ x, A) @' a == A) |
10 | rappsab | (S\ x, A) @' x == A |
|
11 | anr | G /\ x = a -> x = a |
|
12 | 11 | rappeq2d | G /\ x = a -> (S\ x, A) @' x == (S\ x, A) @' a |
13 | 12 | eqscomd | G /\ x = a -> (S\ x, A) @' a == (S\ x, A) @' x |
14 | 10, 13 | syl6eqs | G /\ x = a -> (S\ x, A) @' a == A |
15 | 9, 14 | syl5ibrcom | G /\ x = a -> F == S\ x, A -> F @' a == A |
16 | hyp e | G /\ x = a -> F @' a == A -> P |
|
17 | 15, 16 | syld | G /\ x = a -> F == S\ x, A -> P |
18 | 17 | exp | G -> x = a -> F == S\ x, A -> P |
19 | 2, 7, 18 | eexdh | G -> E. x x = a -> F == S\ x, A -> P |
20 | 1, 19 | mpi | G -> F == S\ x, A -> P |