Theorem rappsabe | index | src |

theorem rappsabe (B: set) (a: nat) {x: nat} (A: set x):
  $ x = a -> A == B $ >
  $ (S\ x, A) @' a == B $;
StepHypRefExpression
1 hyp h
x = a -> A == B
2 1 anwr
T. /\ x = a -> A == B
3 2 rappsabed
T. -> (S\ x, A) @' a == B
4 3 trud
(S\ x, A) @' a == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)