theorem rappsab {x: nat} (A: set x): $ (S\ x, A) @' x == A $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
(S\ x, A) @' a1 == S[a1 / x] A |
||
2 |
a1 = x -> (S\ x, A) @' a1 == (S\ x, A) @' x |
||
3 |
a1 = x -> x = a1 |
||
4 |
x = a1 -> A == S[a1 / x] A |
||
5 |
x = a1 -> S[a1 / x] A == A |
||
6 |
a1 = x -> S[a1 / x] A == A |
||
7 |
a1 = x -> ((S\ x, A) @' a1 == S[a1 / x] A <-> (S\ x, A) @' x == A) |
||
8 |
(S\ x, A) @' x == A |