theorem sbeth (a: nat) (q: wff) {x: nat} (p: wff x):
$ p $ >
$ x = a -> (p <-> q) $ >
$ q $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp e | x = a -> (p <-> q) |
|
| 2 | 1 | sbe | [a / x] p <-> q |
| 3 | hyp h | p |
|
| 4 | 3 | sbth | [a / x] p |
| 5 | 2, 4 | mpbi | q |