Theorem sbeth | index | src |

theorem sbeth (a: nat) (q: wff) {x: nat} (p: wff x):
  $ p $ >
  $ x = a -> (p <-> q) $ >
  $ q $;
StepHypRefExpression
1 hyp e
x = a -> (p <-> q)
2 1 sbe
[a / x] p <-> q
3 hyp h
p
4 3 sbth
[a / x] p
5 2, 4 mpbi
q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)