Theorem sbthd | index | src |

theorem sbthd (G: wff) (a: nat) {x: nat} (p: wff x):
  $ G /\ x = a -> p $ >
  $ G -> [a / x] p $;
StepHypRefExpression
1 itru
T.
2 bith
p -> T. -> (p <-> T.)
3 1, 2 mpi
p -> (p <-> T.)
4 hyp h
G /\ x = a -> p
5 3, 4 syl
G /\ x = a -> (p <-> T.)
6 5 sbed
G -> ([a / x] p <-> T.)
7 1, 6 mpbiri
G -> [a / x] p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)