theorem rappsabs (a: nat) {x: nat} (A: set x): $ (S\ x, A) @' a == S[a / x] A $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a1 e. (S\ x, A) @' a <-> a, a1 e. S\ x, A) -> (a, a1 e. S\ x, A <-> a1 e. S[a / x] A) -> (a1 e. (S\ x, A) @' a <-> a1 e. S[a / x] A) |
2 |
|
elrapp |
a1 e. (S\ x, A) @' a <-> a, a1 e. S\ x, A |
3 |
1, 2 |
ax_mp |
(a, a1 e. S\ x, A <-> a1 e. S[a / x] A) -> (a1 e. (S\ x, A) @' a <-> a1 e. S[a / x] A) |
4 |
|
elsabs |
a, a1 e. S\ x, A <-> a1 e. S[a / x] A |
5 |
3, 4 |
ax_mp |
a1 e. (S\ x, A) @' a <-> a1 e. S[a / x] A |
6 |
5 |
ax_gen |
A. a1 (a1 e. (S\ x, A) @' a <-> a1 e. S[a / x] A) |
7 |
6 |
conv eqs |
(S\ x, A) @' a == S[a / x] A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)