theorem pimexeqed (G: wff) {x y: nat} (a: nat) (p: wff x y) (q: wff x)
  (p2 q2: wff y):
  $ G /\ x = a -> (p <-> p2) $ >
  $ G /\ x = a -> (q <-> q2) $ >
  $ G -> ((P. x E. y (x = a /\ p) -> q) <-> (P. y p2 -> q2)) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          excomb | 
          E. x E. y (x = a /\ p) <-> E. y E. x (x = a /\ p)  | 
        
        
          | 2 | 
           | 
          hyp e1 | 
          G /\ x = a -> (p <-> p2)  | 
        
        
          | 3 | 
          2 | 
          exeqed | 
          G -> (E. x (x = a /\ p) <-> p2)  | 
        
        
          | 4 | 
          3 | 
          exeqd | 
          G -> (E. y E. x (x = a /\ p) <-> E. y p2)  | 
        
        
          | 5 | 
          1, 4 | 
          syl5bb | 
          G -> (E. x E. y (x = a /\ p) <-> E. y p2)  | 
        
        
          | 6 | 
           | 
          eexb | 
          E. y (x = a /\ p) -> q <-> A. y (x = a /\ p -> q)  | 
        
        
          | 7 | 
          6 | 
          aleqi | 
          A. x (E. y (x = a /\ p) -> q) <-> A. x A. y (x = a /\ p -> q)  | 
        
        
          | 8 | 
           | 
          alcomb | 
          A. x A. y (x = a /\ p -> q) <-> A. y A. x (x = a /\ p -> q)  | 
        
        
          | 9 | 
           | 
          impexp | 
          x = a /\ p -> q <-> x = a -> p -> q  | 
        
        
          | 10 | 
          9 | 
          aleqi | 
          A. x (x = a /\ p -> q) <-> A. x (x = a -> p -> q)  | 
        
        
          | 11 | 
           | 
          hyp e2 | 
          G /\ x = a -> (q <-> q2)  | 
        
        
          | 12 | 
          2, 11 | 
          imeqd | 
          G /\ x = a -> (p -> q <-> p2 -> q2)  | 
        
        
          | 13 | 
          12 | 
          aleqed | 
          G -> (A. x (x = a -> p -> q) <-> p2 -> q2)  | 
        
        
          | 14 | 
          10, 13 | 
          syl5bb | 
          G -> (A. x (x = a /\ p -> q) <-> p2 -> q2)  | 
        
        
          | 15 | 
          14 | 
          aleqd | 
          G -> (A. y A. x (x = a /\ p -> q) <-> A. y (p2 -> q2))  | 
        
        
          | 16 | 
          8, 15 | 
          syl5bb | 
          G -> (A. x A. y (x = a /\ p -> q) <-> A. y (p2 -> q2))  | 
        
        
          | 17 | 
          7, 16 | 
          syl5bb | 
          G -> (A. x (E. y (x = a /\ p) -> q) <-> A. y (p2 -> q2))  | 
        
        
          | 18 | 
          5, 17 | 
          aneqd | 
          G -> (E. x E. y (x = a /\ p) /\ A. x (E. y (x = a /\ p) -> q) <-> E. y p2 /\ A. y (p2 -> q2))  | 
        
        
          | 19 | 
          18 | 
          conv pim | 
          G -> ((P. x E. y (x = a /\ p) -> q) <-> (P. y p2 -> q2))  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12)