theorem pimexeqed (G: wff) {x y: nat} (a: nat) (p: wff x y) (q: wff x)
(p2 q2: wff y):
$ G /\ x = a -> (p <-> p2) $ >
$ G /\ x = a -> (q <-> q2) $ >
$ G -> ((P. x E. y (x = a /\ p) -> q) <-> (P. y p2 -> q2)) $;
Step | Hyp | Ref | Expression |
1 |
|
excomb |
E. x E. y (x = a /\ p) <-> E. y E. x (x = a /\ p) |
2 |
|
hyp e1 |
G /\ x = a -> (p <-> p2) |
3 |
2 |
exeqed |
G -> (E. x (x = a /\ p) <-> p2) |
4 |
3 |
exeqd |
G -> (E. y E. x (x = a /\ p) <-> E. y p2) |
5 |
1, 4 |
syl5bb |
G -> (E. x E. y (x = a /\ p) <-> E. y p2) |
6 |
|
eexb |
E. y (x = a /\ p) -> q <-> A. y (x = a /\ p -> q) |
7 |
6 |
aleqi |
A. x (E. y (x = a /\ p) -> q) <-> A. x A. y (x = a /\ p -> q) |
8 |
|
alcomb |
A. x A. y (x = a /\ p -> q) <-> A. y A. x (x = a /\ p -> q) |
9 |
|
impexp |
x = a /\ p -> q <-> x = a -> p -> q |
10 |
9 |
aleqi |
A. x (x = a /\ p -> q) <-> A. x (x = a -> p -> q) |
11 |
|
hyp e2 |
G /\ x = a -> (q <-> q2) |
12 |
2, 11 |
imeqd |
G /\ x = a -> (p -> q <-> p2 -> q2) |
13 |
12 |
aleqed |
G -> (A. x (x = a -> p -> q) <-> p2 -> q2) |
14 |
10, 13 |
syl5bb |
G -> (A. x (x = a /\ p -> q) <-> p2 -> q2) |
15 |
14 |
aleqd |
G -> (A. y A. x (x = a /\ p -> q) <-> A. y (p2 -> q2)) |
16 |
8, 15 |
syl5bb |
G -> (A. x A. y (x = a /\ p -> q) <-> A. y (p2 -> q2)) |
17 |
7, 16 |
syl5bb |
G -> (A. x (E. y (x = a /\ p) -> q) <-> A. y (p2 -> q2)) |
18 |
5, 17 |
aneqd |
G -> (E. x E. y (x = a /\ p) /\ A. x (E. y (x = a /\ p) -> q) <-> E. y p2 /\ A. y (p2 -> q2)) |
19 |
18 |
conv pim |
G -> ((P. x E. y (x = a /\ p) -> q) <-> (P. y p2 -> q2)) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12)