theorem aleqed (G: wff) {x: nat} (a: nat) (p: wff x) (q: wff):
$ G /\ x = a -> (p <-> q) $ >
$ G -> (A. x (x = a -> p) <-> q) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb2 | [a / x] p <-> A. x (x = a -> p) |
|
| 2 | hyp e | G /\ x = a -> (p <-> q) |
|
| 3 | 2 | sbed | G -> ([a / x] p <-> q) |
| 4 | 1, 3 | syl5bbr | G -> (A. x (x = a -> p) <-> q) |