Theorem aleqed | index | src |

theorem aleqed (G: wff) {x: nat} (a: nat) (p: wff x) (q: wff):
  $ G /\ x = a -> (p <-> q) $ >
  $ G -> (A. x (x = a -> p) <-> q) $;
StepHypRefExpression
1 dfsb2
[a / x] p <-> A. x (x = a -> p)
2 hyp e
G /\ x = a -> (p <-> q)
3 2 sbed
G -> ([a / x] p <-> q)
4 1, 3 syl5bbr
G -> (A. x (x = a -> p) <-> q)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)