theorem aleqe {x: nat} (a: nat) (p: wff x) (q: wff):
  $ x = a -> (p <-> q) $ >
  $ A. x (x = a -> p) <-> q $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr3 | 
          ([a / x] p <-> A. x (x = a -> p)) -> ([a / x] p <-> q) -> (A. x (x = a -> p) <-> q)  | 
        
        
          | 2 | 
           | 
          dfsb2 | 
          [a / x] p <-> A. x (x = a -> p)  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          ([a / x] p <-> q) -> (A. x (x = a -> p) <-> q)  | 
        
        
          | 4 | 
           | 
          hyp e | 
          x = a -> (p <-> q)  | 
        
        
          | 5 | 
          4 | 
          sbe | 
          [a / x] p <-> q  | 
        
        
          | 6 | 
          3, 5 | 
          ax_mp | 
          A. x (x = a -> p) <-> q  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12)