theorem cbvsb {x y: nat} (a: nat) (p: wff x) (q: wff y):
$ x = y -> (p <-> q) $ >
$ [a / x] p <-> [a / y] q $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | F/ y p |
|
| 2 | nfv | F/ x q |
|
| 3 | hyp e | x = y -> (p <-> q) |
|
| 4 | 1, 2, 3 | cbvsbh | [a / x] p <-> [a / y] q |