theorem nattruele (n: nat): $ nat (true n) <= n $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(nat (true n) <= n -> nat (true n) <= n) -> (n <= nat (true n) -> nat (true n) <= n) -> nat (true n) <= n \/ n <= nat (true n) -> nat (true n) <= n |
2 |
|
id |
nat (true n) <= n -> nat (true n) <= n |
3 |
1, 2 |
ax_mp |
(n <= nat (true n) -> nat (true n) <= n) -> nat (true n) <= n \/ n <= nat (true n) -> nat (true n) <= n |
4 |
|
eqle |
nat (true n) = n -> nat (true n) <= n |
5 |
|
nattrue |
bool n -> nat (true n) = n |
6 |
|
boolnat |
bool (nat (true n)) |
7 |
|
lebool |
n <= nat (true n) -> bool (nat (true n)) -> bool n |
8 |
6, 7 |
mpi |
n <= nat (true n) -> bool n |
9 |
5, 8 |
syl |
n <= nat (true n) -> nat (true n) = n |
10 |
4, 9 |
syl |
n <= nat (true n) -> nat (true n) <= n |
11 |
3, 10 |
ax_mp |
nat (true n) <= n \/ n <= nat (true n) -> nat (true n) <= n |
12 |
|
leorle |
nat (true n) <= n \/ n <= nat (true n) |
13 |
11, 12 |
ax_mp |
nat (true n) <= n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)