Theorem nattruele | index | src |

theorem nattruele (n: nat): $ nat (true n) <= n $;
StepHypRefExpression
1 eor
(nat (true n) <= n -> nat (true n) <= n) -> (n <= nat (true n) -> nat (true n) <= n) -> nat (true n) <= n \/ n <= nat (true n) -> nat (true n) <= n
2 id
nat (true n) <= n -> nat (true n) <= n
3 1, 2 ax_mp
(n <= nat (true n) -> nat (true n) <= n) -> nat (true n) <= n \/ n <= nat (true n) -> nat (true n) <= n
4 eqle
nat (true n) = n -> nat (true n) <= n
5 nattrue
bool n -> nat (true n) = n
6 boolnat
bool (nat (true n))
7 lebool
n <= nat (true n) -> bool (nat (true n)) -> bool n
8 6, 7 mpi
n <= nat (true n) -> bool n
9 5, 8 syl
n <= nat (true n) -> nat (true n) = n
10 4, 9 syl
n <= nat (true n) -> nat (true n) <= n
11 3, 10 ax_mp
nat (true n) <= n \/ n <= nat (true n) -> nat (true n) <= n
12 leorle
nat (true n) <= n \/ n <= nat (true n)
13 11, 12 ax_mp
nat (true n) <= n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)