theorem boolext (a b: nat):
$ bool a -> bool b -> (true a <-> true b <-> a = b) $;
Step | Hyp | Ref | Expression |
1 |
|
nattrue |
bool a -> nat (true a) = a |
2 |
|
anll |
bool a /\ bool b /\ (true a <-> true b) -> bool a |
3 |
1, 2 |
syl |
bool a /\ bool b /\ (true a <-> true b) -> nat (true a) = a |
4 |
|
nattrue |
bool b -> nat (true b) = b |
5 |
|
anlr |
bool a /\ bool b /\ (true a <-> true b) -> bool b |
6 |
4, 5 |
syl |
bool a /\ bool b /\ (true a <-> true b) -> nat (true b) = b |
7 |
3, 6 |
eqeqd |
bool a /\ bool b /\ (true a <-> true b) -> (nat (true a) = nat (true b) <-> a = b) |
8 |
|
nateq |
(true a <-> true b) -> nat (true a) = nat (true b) |
9 |
8 |
anwr |
bool a /\ bool b /\ (true a <-> true b) -> nat (true a) = nat (true b) |
10 |
7, 9 |
mpbid |
bool a /\ bool b /\ (true a <-> true b) -> a = b |
11 |
10 |
exp |
bool a /\ bool b -> (true a <-> true b) -> a = b |
12 |
|
trueeq |
a = b -> (true a <-> true b) |
13 |
12 |
a1i |
bool a /\ bool b -> a = b -> (true a <-> true b) |
14 |
11, 13 |
ibid |
bool a /\ bool b -> (true a <-> true b <-> a = b) |
15 |
14 |
exp |
bool a -> bool b -> (true a <-> true b <-> a = b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)