theorem imv (F: set): $ F '' _V == Ran F $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(x e. F '' _V <-> E. y (y e. _V /\ y, x e. F)) -> (x e. Ran F <-> E. y (y e. _V /\ y, x e. F)) -> (x e. F '' _V <-> x e. Ran F) |
2 |
|
elima |
x e. F '' _V <-> E. y (y e. _V /\ y, x e. F) |
3 |
1, 2 |
ax_mp |
(x e. Ran F <-> E. y (y e. _V /\ y, x e. F)) -> (x e. F '' _V <-> x e. Ran F) |
4 |
|
bitr4 |
(x e. Ran F <-> E. y y, x e. F) -> (E. y (y e. _V /\ y, x e. F) <-> E. y y, x e. F) -> (x e. Ran F <-> E. y (y e. _V /\ y, x e. F)) |
5 |
|
elrn |
x e. Ran F <-> E. y y, x e. F |
6 |
4, 5 |
ax_mp |
(E. y (y e. _V /\ y, x e. F) <-> E. y y, x e. F) -> (x e. Ran F <-> E. y (y e. _V /\ y, x e. F)) |
7 |
|
bian1 |
y e. _V -> (y e. _V /\ y, x e. F <-> y, x e. F) |
8 |
|
elv |
y e. _V |
9 |
7, 8 |
ax_mp |
y e. _V /\ y, x e. F <-> y, x e. F |
10 |
9 |
exeqi |
E. y (y e. _V /\ y, x e. F) <-> E. y y, x e. F |
11 |
6, 10 |
ax_mp |
x e. Ran F <-> E. y (y e. _V /\ y, x e. F) |
12 |
3, 11 |
ax_mp |
x e. F '' _V <-> x e. Ran F |
13 |
12 |
eqri |
F '' _V == Ran F |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)