Theorem elima | index | src |

theorem elima (A F: set) (b: nat) {x: nat}:
  $ b e. F '' A <-> E. x (x e. A /\ x, b e. F) $;
StepHypRefExpression
1 preq2
y = b -> x, y = x, b
2 1 eleq1d
y = b -> (x, y e. F <-> x, b e. F)
3 2 aneq2d
y = b -> (x e. A /\ x, y e. F <-> x e. A /\ x, b e. F)
4 3 exeqd
y = b -> (E. x (x e. A /\ x, y e. F) <-> E. x (x e. A /\ x, b e. F))
5 4 elabe
b e. {y | E. x (x e. A /\ x, y e. F)} <-> E. x (x e. A /\ x, b e. F)
6 5 conv Im
b e. F '' A <-> E. x (x e. A /\ x, b e. F)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)