theorem elima (A F: set) (b: nat) {x: nat}:
  $ b e. F '' A <-> E. x (x e. A /\ x, b e. F) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          preq2 | 
          y = b -> x, y = x, b  | 
        
        
          | 2 | 
          1 | 
          eleq1d | 
          y = b -> (x, y e. F <-> x, b e. F)  | 
        
        
          | 3 | 
          2 | 
          aneq2d | 
          y = b -> (x e. A /\ x, y e. F <-> x e. A /\ x, b e. F)  | 
        
        
          | 4 | 
          3 | 
          exeqd | 
          y = b -> (E. x (x e. A /\ x, y e. F) <-> E. x (x e. A /\ x, b e. F))  | 
        
        
          | 5 | 
          4 | 
          elabe | 
          b e. {y | E. x (x e. A /\ x, y e. F)} <-> E. x (x e. A /\ x, b e. F) | 
        
        
          | 6 | 
          5 | 
          conv Im | 
          b e. F '' A <-> E. x (x e. A /\ x, b e. F)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)