Theorem elimai | index | src |

theorem elimai (A F: set) (a b: nat): $ a, b e. F -> a e. A -> b e. F '' A $;
StepHypRefExpression
1 elima
b e. F '' A <-> E. x (x e. A /\ x, b e. F)
2 eleq1
x = a -> (x e. A <-> a e. A)
3 preq1
x = a -> x, b = a, b
4 3 eleq1d
x = a -> (x, b e. F <-> a, b e. F)
5 2, 4 aneqd
x = a -> (x e. A /\ x, b e. F <-> a e. A /\ a, b e. F)
6 5 iexe
a e. A /\ a, b e. F -> E. x (x e. A /\ x, b e. F)
7 1, 6 sylibr
a e. A /\ a, b e. F -> b e. F '' A
8 7 expcom
a, b e. F -> a e. A -> b e. F '' A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)