theorem elimai (A F: set) (a b: nat): $ a, b e. F -> a e. A -> b e. F '' A $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          elima | 
          b e. F '' A <-> E. x (x e. A /\ x, b e. F)  | 
        
        
          | 2 | 
           | 
          eleq1 | 
          x = a -> (x e. A <-> a e. A)  | 
        
        
          | 3 | 
           | 
          preq1 | 
          x = a -> x, b = a, b  | 
        
        
          | 4 | 
          3 | 
          eleq1d | 
          x = a -> (x, b e. F <-> a, b e. F)  | 
        
        
          | 5 | 
          2, 4 | 
          aneqd | 
          x = a -> (x e. A /\ x, b e. F <-> a e. A /\ a, b e. F)  | 
        
        
          | 6 | 
          5 | 
          iexe | 
          a e. A /\ a, b e. F -> E. x (x e. A /\ x, b e. F)  | 
        
        
          | 7 | 
          1, 6 | 
          sylibr | 
          a e. A /\ a, b e. F -> b e. F '' A  | 
        
        
          | 8 | 
          7 | 
          expcom | 
          a, b e. F -> a e. A -> b e. F '' A  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)