theorem cnveqd (_G: wff) (_A1 _A2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> cnv _A1 == cnv _A2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> y, x = y, x |
2 |
|
hyp _Ah |
_G -> _A1 == _A2 |
3 |
1, 2 |
eleqd |
_G -> (y, x e. _A1 <-> y, x e. _A2) |
4 |
3 |
abeqd |
_G -> {y | y, x e. _A1} == {y | y, x e. _A2} |
5 |
4 |
sabeqd |
_G -> S\ x, {y | y, x e. _A1} == S\ x, {y | y, x e. _A2} |
6 |
5 |
conv cnv |
_G -> cnv _A1 == cnv _A2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)