Theorem expim | index | src |

theorem expim {x y: nat} (p: wff x) (q: wff x y):
  $ E. y (P. x p -> q) -> (P. x p -> E. y q) $;
StepHypRefExpression
1 anl
E. x p /\ A. x (p -> q) -> E. x p
2 1 conv pim
(P. x p -> q) -> E. x p
3 2 eximi
E. y (P. x p -> q) -> E. y E. x p
4 excom
E. y E. x p -> E. x E. y p
5 id
p -> p
6 5 eex
E. y p -> p
7 6 eximi
E. x E. y p -> E. x p
8 4, 7 rsyl
E. y E. x p -> E. x p
9 3, 8 rsyl
E. y (P. x p -> q) -> E. x p
10 exral
E. y A. x (p -> q) -> A. x (p -> E. y q)
11 anr
E. x p /\ A. x (p -> q) -> A. x (p -> q)
12 11 conv pim
(P. x p -> q) -> A. x (p -> q)
13 12 eximi
E. y (P. x p -> q) -> E. y A. x (p -> q)
14 10, 13 syl
E. y (P. x p -> q) -> A. x (p -> E. y q)
15 9, 14 iand
E. y (P. x p -> q) -> E. x p /\ A. x (p -> E. y q)
16 15 conv pim
E. y (P. x p -> q) -> (P. x p -> E. y q)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)