theorem expim {x y: nat} (p: wff x) (q: wff x y):
  $ E. y (P. x p -> q) -> (P. x p -> E. y q) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          anl | 
          E. x p /\ A. x (p -> q) -> E. x p  | 
        
        
          | 2 | 
          1 | 
          conv pim | 
          (P. x p -> q) -> E. x p  | 
        
        
          | 3 | 
          2 | 
          eximi | 
          E. y (P. x p -> q) -> E. y E. x p  | 
        
        
          | 4 | 
           | 
          excom | 
          E. y E. x p -> E. x E. y p  | 
        
        
          | 5 | 
           | 
          id | 
          p -> p  | 
        
        
          | 6 | 
          5 | 
          eex | 
          E. y p -> p  | 
        
        
          | 7 | 
          6 | 
          eximi | 
          E. x E. y p -> E. x p  | 
        
        
          | 8 | 
          4, 7 | 
          rsyl | 
          E. y E. x p -> E. x p  | 
        
        
          | 9 | 
          3, 8 | 
          rsyl | 
          E. y (P. x p -> q) -> E. x p  | 
        
        
          | 10 | 
           | 
          exral | 
          E. y A. x (p -> q) -> A. x (p -> E. y q)  | 
        
        
          | 11 | 
           | 
          anr | 
          E. x p /\ A. x (p -> q) -> A. x (p -> q)  | 
        
        
          | 12 | 
          11 | 
          conv pim | 
          (P. x p -> q) -> A. x (p -> q)  | 
        
        
          | 13 | 
          12 | 
          eximi | 
          E. y (P. x p -> q) -> E. y A. x (p -> q)  | 
        
        
          | 14 | 
          10, 13 | 
          syl | 
          E. y (P. x p -> q) -> A. x (p -> E. y q)  | 
        
        
          | 15 | 
          9, 14 | 
          iand | 
          E. y (P. x p -> q) -> E. x p /\ A. x (p -> E. y q)  | 
        
        
          | 16 | 
          15 | 
          conv pim | 
          E. y (P. x p -> q) -> (P. x p -> E. y q)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12)