theorem rexpim {x y: nat} (a: wff y) (p: wff x) (q: wff x y):
  $ E. y (a /\ (P. x p -> q)) -> (P. x p -> E. y (a /\ q)) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          expim | 
          E. y (P. x p -> a /\ q) -> (P. x p -> E. y (a /\ q))  | 
        
        
          | 2 | 
           | 
          bian1 | 
          a -> (a /\ q <-> q)  | 
        
        
          | 3 | 
          2 | 
          pimeq2d | 
          a -> ((P. x p -> a /\ q) <-> (P. x p -> q))  | 
        
        
          | 4 | 
          3 | 
          bi2a | 
          a /\ (P. x p -> q) -> (P. x p -> a /\ q)  | 
        
        
          | 5 | 
          4 | 
          eximi | 
          E. y (a /\ (P. x p -> q)) -> E. y (P. x p -> a /\ q)  | 
        
        
          | 6 | 
          1, 5 | 
          syl | 
          E. y (a /\ (P. x p -> q)) -> (P. x p -> E. y (a /\ q))  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12)