theorem rexpim {x y: nat} (a: wff y) (p: wff x) (q: wff x y):
$ E. y (a /\ (P. x p -> q)) -> (P. x p -> E. y (a /\ q)) $;
Step | Hyp | Ref | Expression |
1 |
|
expim |
E. y (P. x p -> a /\ q) -> (P. x p -> E. y (a /\ q)) |
2 |
|
bian1 |
a -> (a /\ q <-> q) |
3 |
2 |
pimeq2d |
a -> ((P. x p -> a /\ q) <-> (P. x p -> q)) |
4 |
3 |
bi2a |
a /\ (P. x p -> q) -> (P. x p -> a /\ q) |
5 |
4 |
eximi |
E. y (a /\ (P. x p -> q)) -> E. y (P. x p -> a /\ q) |
6 |
1, 5 |
syl |
E. y (a /\ (P. x p -> q)) -> (P. x p -> E. y (a /\ q)) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12)