Theorem pimeq2d | index | src |

theorem pimeq2d (G: wff) {x: nat} (p q1 q2: wff x):
  $ G -> (q1 <-> q2) $ >
  $ G -> ((P. x p -> q1) <-> (P. x p -> q2)) $;
StepHypRefExpression
1 pimeq2
A. x (q1 <-> q2) -> ((P. x p -> q1) <-> (P. x p -> q2))
2 hyp h1
G -> (q1 <-> q2)
3 2 iald
G -> A. x (q1 <-> q2)
4 1, 3 syl
G -> ((P. x p -> q1) <-> (P. x p -> q2))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)