Theorem pimeq1d | index | src |

theorem pimeq1d (G: wff) {x: nat} (p1 p2 q: wff x):
  $ G -> (p1 <-> p2) $ >
  $ G -> ((P. x p1 -> q) <-> (P. x p2 -> q)) $;
StepHypRefExpression
1 pimeq1
A. x (p1 <-> p2) -> ((P. x p1 -> q) <-> (P. x p2 -> q))
2 hyp h1
G -> (p1 <-> p2)
3 2 iald
G -> A. x (p1 <-> p2)
4 1, 3 syl
G -> ((P. x p1 -> q) <-> (P. x p2 -> q))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)