Theorem pimeq1 | index | src |

theorem pimeq1 {x: nat} (p1 p2 q: wff x):
  $ A. x (p1 <-> p2) -> ((P. x p1 -> q) <-> (P. x p2 -> q)) $;
StepHypRefExpression
1 exeq
A. x (p1 <-> p2) -> (E. x p1 <-> E. x p2)
2 aleq
A. x (p1 -> q <-> p2 -> q) -> (A. x (p1 -> q) <-> A. x (p2 -> q))
3 id
(p1 <-> p2) -> (p1 <-> p2)
4 3 imeq1d
(p1 <-> p2) -> (p1 -> q <-> p2 -> q)
5 4 alimi
A. x (p1 <-> p2) -> A. x (p1 -> q <-> p2 -> q)
6 2, 5 syl
A. x (p1 <-> p2) -> (A. x (p1 -> q) <-> A. x (p2 -> q))
7 1, 6 aneqd
A. x (p1 <-> p2) -> (E. x p1 /\ A. x (p1 -> q) <-> E. x p2 /\ A. x (p2 -> q))
8 7 conv pim
A. x (p1 <-> p2) -> ((P. x p1 -> q) <-> (P. x p2 -> q))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)