Theorem pimeq1i | index | src |

theorem pimeq1i {x: nat} (p1 p2 q: wff x):
  $ p1 <-> p2 $ >
  $ (P. x p1 -> q) <-> (P. x p2 -> q) $;
StepHypRefExpression
1 hyp h1
p1 <-> p2
2 1 a1i
T. -> (p1 <-> p2)
3 2 pimeq1d
T. -> ((P. x p1 -> q) <-> (P. x p2 -> q))
4 3 trud
(P. x p1 -> q) <-> (P. x p2 -> q)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5)