theorem pimeq1i {x: nat} (p1 p2 q: wff x):
$ p1 <-> p2 $ >
$ (P. x p1 -> q) <-> (P. x p2 -> q) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | p1 <-> p2 |
|
| 2 | 1 | a1i | T. -> (p1 <-> p2) |
| 3 | 2 | pimeq1d | T. -> ((P. x p1 -> q) <-> (P. x p2 -> q)) |
| 4 | 3 | trud | (P. x p1 -> q) <-> (P. x p2 -> q) |