Theorem pimeq2i | index | src |

theorem pimeq2i {x: nat} (p q1 q2: wff x):
  $ q1 <-> q2 $ >
  $ (P. x p -> q1) <-> (P. x p -> q2) $;
StepHypRefExpression
1 hyp h1
q1 <-> q2
2 1 a1i
T. -> (q1 <-> q2)
3 2 pimeq2d
T. -> ((P. x p -> q1) <-> (P. x p -> q2))
4 3 trud
(P. x p -> q1) <-> (P. x p -> q2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5)