Theorem elArraySne0 | index | src |

theorem elArraySne0 (A: set) (l n: nat): $ l e. Array A (suc n) -> l != 0 $;
StepHypRefExpression
1 elArray
l e. Array A (suc n) <-> l e. List A /\ len l = suc n
2 noteq
(len l = 0 <-> l = 0) -> (~len l = 0 <-> ~l = 0)
3 2 conv ne
(len l = 0 <-> l = 0) -> (~len l = 0 <-> l != 0)
4 leneq0
len l = 0 <-> l = 0
5 3, 4 ax_mp
~len l = 0 <-> l != 0
6 sucne0
len l = suc n -> len l != 0
7 6 conv ne
len l = suc n -> ~len l = 0
8 5, 7 sylib
len l = suc n -> l != 0
9 8 anwr
l e. List A /\ len l = suc n -> l != 0
10 1, 9 sylbi
l e. Array A (suc n) -> l != 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)