Theorem elArray1 | index | src |

theorem elArray1 (A: set) (a: nat): $ a : 0 e. Array A 1 <-> a e. A $;
StepHypRefExpression
1 bitr
(a : 0 e. Array A 1 <-> a e. A /\ 0 e. Array A 0) -> (a e. A /\ 0 e. Array A 0 <-> a e. A) -> (a : 0 e. Array A 1 <-> a e. A)
2 elArrayS
a : 0 e. Array A (suc 0) <-> a e. A /\ 0 e. Array A 0
3 2 conv d1
a : 0 e. Array A 1 <-> a e. A /\ 0 e. Array A 0
4 1, 3 ax_mp
(a e. A /\ 0 e. Array A 0 <-> a e. A) -> (a : 0 e. Array A 1 <-> a e. A)
5 bian2
0 e. Array A 0 -> (a e. A /\ 0 e. Array A 0 <-> a e. A)
6 elArray0
0 e. Array A 0
7 5, 6 ax_mp
a e. A /\ 0 e. Array A 0 <-> a e. A
8 4, 7 ax_mp
a : 0 e. Array A 1 <-> a e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)