Theorem dmdisj1 | index | src |

theorem dmdisj1 (A B: set): $ Dom A i^i Dom B == 0 -> A i^i B == 0 $;
StepHypRefExpression
1 ss02
Dom A i^i Dom B C_ 0 <-> Dom A i^i Dom B == 0
2 ss02
A i^i B C_ 0 <-> A i^i B == 0
3 elin
x, y e. A i^i B <-> x, y e. A /\ x, y e. B
4 anim
(x, y e. A -> x e. Dom A) -> (x, y e. B -> x e. Dom B) -> x, y e. A /\ x, y e. B -> x e. Dom A /\ x e. Dom B
5 preldm
x, y e. A -> x e. Dom A
6 4, 5 ax_mp
(x, y e. B -> x e. Dom B) -> x, y e. A /\ x, y e. B -> x e. Dom A /\ x e. Dom B
7 preldm
x, y e. B -> x e. Dom B
8 6, 7 ax_mp
x, y e. A /\ x, y e. B -> x e. Dom A /\ x e. Dom B
9 elin
x e. Dom A i^i Dom B <-> x e. Dom A /\ x e. Dom B
10 absurd
~x e. 0 -> x e. 0 -> x, y e. 0
11 el02
~x e. 0
12 10, 11 ax_mp
x e. 0 -> x, y e. 0
13 ssel
Dom A i^i Dom B C_ 0 -> x e. Dom A i^i Dom B -> x e. 0
14 12, 13 syl6
Dom A i^i Dom B C_ 0 -> x e. Dom A i^i Dom B -> x, y e. 0
15 9, 14 syl5bir
Dom A i^i Dom B C_ 0 -> x e. Dom A /\ x e. Dom B -> x, y e. 0
16 8, 15 syl5
Dom A i^i Dom B C_ 0 -> x, y e. A /\ x, y e. B -> x, y e. 0
17 3, 16 syl5bi
Dom A i^i Dom B C_ 0 -> x, y e. A i^i B -> x, y e. 0
18 17 ssrd2
Dom A i^i Dom B C_ 0 -> A i^i B C_ 0
19 2, 18 sylib
Dom A i^i Dom B C_ 0 -> A i^i B == 0
20 1, 19 sylbir
Dom A i^i Dom B == 0 -> A i^i B == 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)