theorem dmdisj1 (A B: set): $ Dom A i^i Dom B == 0 -> A i^i B == 0 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          ss02 | 
          Dom A i^i Dom B C_ 0 <-> Dom A i^i Dom B == 0  | 
        
        
          | 2 | 
           | 
          ss02 | 
          A i^i B C_ 0 <-> A i^i B == 0  | 
        
        
          | 3 | 
           | 
          elin | 
          x, y e. A i^i B <-> x, y e. A /\ x, y e. B  | 
        
        
          | 4 | 
           | 
          anim | 
          (x, y e. A -> x e. Dom A) -> (x, y e. B -> x e. Dom B) -> x, y e. A /\ x, y e. B -> x e. Dom A /\ x e. Dom B  | 
        
        
          | 5 | 
           | 
          preldm | 
          x, y e. A -> x e. Dom A  | 
        
        
          | 6 | 
          4, 5 | 
          ax_mp | 
          (x, y e. B -> x e. Dom B) -> x, y e. A /\ x, y e. B -> x e. Dom A /\ x e. Dom B  | 
        
        
          | 7 | 
           | 
          preldm | 
          x, y e. B -> x e. Dom B  | 
        
        
          | 8 | 
          6, 7 | 
          ax_mp | 
          x, y e. A /\ x, y e. B -> x e. Dom A /\ x e. Dom B  | 
        
        
          | 9 | 
           | 
          elin | 
          x e. Dom A i^i Dom B <-> x e. Dom A /\ x e. Dom B  | 
        
        
          | 10 | 
           | 
          absurd | 
          ~x e. 0 -> x e. 0 -> x, y e. 0  | 
        
        
          | 11 | 
           | 
          el02 | 
          ~x e. 0  | 
        
        
          | 12 | 
          10, 11 | 
          ax_mp | 
          x e. 0 -> x, y e. 0  | 
        
        
          | 13 | 
           | 
          ssel | 
          Dom A i^i Dom B C_ 0 -> x e. Dom A i^i Dom B -> x e. 0  | 
        
        
          | 14 | 
          12, 13 | 
          syl6 | 
          Dom A i^i Dom B C_ 0 -> x e. Dom A i^i Dom B -> x, y e. 0  | 
        
        
          | 15 | 
          9, 14 | 
          syl5bir | 
          Dom A i^i Dom B C_ 0 -> x e. Dom A /\ x e. Dom B -> x, y e. 0  | 
        
        
          | 16 | 
          8, 15 | 
          syl5 | 
          Dom A i^i Dom B C_ 0 -> x, y e. A /\ x, y e. B -> x, y e. 0  | 
        
        
          | 17 | 
          3, 16 | 
          syl5bi | 
          Dom A i^i Dom B C_ 0 -> x, y e. A i^i B -> x, y e. 0  | 
        
        
          | 18 | 
          17 | 
          ssrd2 | 
          Dom A i^i Dom B C_ 0 -> A i^i B C_ 0  | 
        
        
          | 19 | 
          2, 18 | 
          sylib | 
          Dom A i^i Dom B C_ 0 -> A i^i B == 0  | 
        
        
          | 20 | 
          1, 19 | 
          sylbir | 
          Dom A i^i Dom B == 0 -> A i^i B == 0  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)